ASH-V/Mathematics-BMH5CC11/20

B.A./B.Sc. 5th Semester (Honours) Examination, 2019 (CBCS)

Subject : Mathematics

Paper : BMH5CC11

(Partial Differential Equations and Applications)

Time: 3 Hours

Full Marks: 60

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

[Symbols and notation have their usual meaning.]

1. Answer any ten questions from the following:

 $2 \times 10 = 20$

- (a) Define a first order quasi linear equation and provide an example of it.
- (b) Obtain the solution of zp + x = 0.
- (c) Use the separation of variables u(x, y) = f(x) + g(y) to solve $u_x^2 + u_y^2 = 1$.
- (d) Define Cauchy problem for second order partial differential equation with example.
- (e) Find the differential equation of all spheres of radius r having centre in the xy plane.
- (f) Obtain the solution of $u_x u_y = 1$ with $u(x, 0) = x^2$.
- (g) Obtain the partial differential equation which has its general solution $u = f(\sqrt{x^2 + y^2})$, f being an arbitrary function.
- (h) Determine the region where the given PDE: $x u_{xx} + u_{yy} = x^2$ is hyperbolic, parabolic or elliptic.
- (i) Prove that the characteristic curves for the equation $x \frac{\partial u}{\partial x} y \frac{\partial u}{\partial y} = u$ in x y plane is circles with centre at origin.
- (j) Show that $u(x,t) = x e^{-t}$ is a bounded solution of $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + e^{-t}$ in $0 \le t < \infty$.
- (k) Eliminate the arbitrary functions f and g from y = f(x at) + g(x + at).
- (1) Find the nature of the partial differential equation $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y}\right) \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y}\right) z = 0.$
- (m) State Cauchy-Kowalevsky theorem.
- (n) Verify that $U(x,t) = 1 e^{-t} (1 f(xe^t))$ with U(x,0) = f(x) is the solution of $\frac{\partial U}{\partial t} = x \frac{\partial U}{\partial x} 1 + U$.
- (o) Find the characteristics of the equation: $u_{xx} + 2u_{xy} + \sin^2 x u_{yy} + u_y = 0$. When is it of hyperbolic type?

Please Turn Over

0492

19104

ASH-V/Mathematics-BMH5CC11/20

(2)

- 2. Answer any four questions from the following:
 - (a) Find the integral surface of the linear partial differential equation $x(y^2 + z)p - y(x^2 + z)q = (x^2 - y^2)z$ containing the straight line x + y = 0, z = 1where $p = \frac{\partial z}{\partial x}; q = \frac{\partial z}{\partial y}$

R

- (b) Obtain the general solution of heat flow equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ by the method of separation of variables.
- (c) Show that the equation $x^2 z_{xx} y^2 z_{yy} = 0$ is of hyperbolic type. Find its characteristics. 2+3=5
- (d) (i) Solve $z(x + y)p + z(x y)q = x^2 + y^2$.
 - (ii) Give geometrical interpretation of P p + Q q = R. 3+2=5

(e) Reduce the equation $3 u_{xx} + 10 u_{xy} + 3 u_{yy} = 0$ to its canonical form and hence solve it.

(f) Solve the problem by the method of characteristic

$$pz + q = 1$$
 with initial data $y = x, z = \frac{x}{2}$.

- 3. Answer any two questions from the following:
 - (a) (i) Obtain the integral surface of the equation

$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 0$$
 satisfying the condition $u(1, y) = y$.

- (ii) Solve $z(x + y) p + z(x y) q = x^2 + y^2$. 5+5=10
- (b) (i) Solve u_{tt} = c² u_{xx}, x > 0, t > 0 subject to the non-homogeneous boundary conditions u(x, 0) = f(x), x ≥ 0, u_t(x, 0) = g(x), x ≥ 0, u(0, t) = p(t), t ≥ 0.
 - (ii) Solve $u_{tt} c^2 u_{xx} = 0$ ($-\infty < x < \infty, t \ge 0$) subject to the initial conditions $u(x, 0) = \eta(x)$ and $u_t(x, 0) = \nu(x)$. 6+4=10
- (c) (i) Reduce $x^2 z_{xx} + 2xy z_{xy} + y^2 z_{yy} = 0$ to canonical form and hence solve it.
 - (ii) Find the characteristic of $x^2 z_{xx} y^2 z_{yy} = 0.$ (5+3)+2=10

(d) (i) Solve by method of separation of variables $\frac{\partial U}{\partial x} = 2 \frac{\partial U}{\partial t} + U$ $U(x, 0) = 6e^{-3x}$

(ii) Prove that the surface passing through the parabola $U = 0, y^2 = 4ax$ and U = 1, $y^2 = -4ax$ and satisfying the equation $x \frac{\partial^2 U}{\partial x^2} + 2 \frac{\partial U}{\partial x} = 0$ 5+5=10

is
$$U = -\frac{y^2}{8ax} + \frac{1}{2}$$

5×4=20

2+3=5

 $10 \times 2 = 20$