B.A./B.Sc. 5th Semester (Honours) Examination, 2019 (CBCS) Subject: Mathematics

Paper : BMH5CC11
 (Partial Differential Equations and Applications)

Time: 3 Hours

Full Marks: 60

> The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.
[Symbols and notation have their usual meaning.]

1. Answer any ten questions from the following:
(a) Define a first order quasi linear equation and provide an example of it.
(b) Obtain the solution of $z p+x=0$.
(c) Use the separation of variables $u(x, y)=f(x)+g(y)$ to solve $u_{x}^{2}+u_{y}^{2}=1$.
(d) Define Cauchy problem for second order partial differential equation with example.
(e) Find the differential equation of all spheres of radius r having centre in the $x y$ plane.
(f) Obtain the solution of $u_{x}-u_{y}=1$ with $u(x, 0)=x^{2}$.
(g) Obtain the partial differential equation which has its general solution $u=f\left(\sqrt{x^{2}+y^{2}}\right)$, f being an arbitrary function.
(h) Determine the region where the given PDE: $x u_{x x}+u_{y y}=x^{2}$ is hyperbolic, parabolic or elliptic.
(i) Prove that the characteristic curves for the equation $x \frac{\partial u}{\partial x}-y \frac{\partial u}{\partial y}=u$ in $x-y$ plane is circles with centre at origin.
(j) Show that $u(x, t)=x-e^{-t}$ is a bounded solution of $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+e^{-t}$ in $0 \leq t<\infty$.
(k) Eliminate the arbitrary functions f and g from $y=f(x-a t)+g(x+a t)$.
(l) Find the nature of the partial differential equation $\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}\right)\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}\right) z=0$.
(m) State Cauchy-Kowalevsky theorem.
(n) Verify that $U(x, t)=1-e^{-t}\left(1-f\left(x e^{t}\right)\right)$ with $U(x, 0)=f(x)$ is the solution of $\frac{\partial U}{\partial t}=$ $x \frac{\partial U}{\partial x}-1+U$.
(o) Find the characteristics of the equation: $u_{x x}+2 u_{x y}+\sin ^{2} x u_{y y}+u_{y}=0$. When is it of hyperbolic type?
2. Answer any four questions from the following:
(a) Find the integral surface of the linear partial differential equation
$x\left(y^{2}+z\right) p-y\left(x^{2}+z\right) q=\left(x^{2}-y^{2}\right) z$ containing the straight line $x+y=0, z=1$ where $p=\frac{\partial z}{\partial x} ; q=\frac{\partial z}{\partial y}$
(b) Obtain the general solution of heat flow equation $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ by the method of separation of variables.
(c) Show that the equation $x^{2} z_{x x}-y^{2} z_{y y}=0$ is of hyperbolic type. Find its characteristics.
(d) (i) Solve $z(x+y) p+z(x-y) q=x^{2}+y^{2}$.
(ii) Give geometrical interpretation of $P p+Q q=R$.
(e) Reduce the equation $3 u_{x x}+10 u_{x y}+3 u_{y y}=0$ to its canonical form and hence solve it.
$2+3=5$
(f) Solve the problem by the method of characteristic

$$
p z+q=1 \text { with initial data } y=x, z=\frac{x}{2}
$$

3. Answer any two questions from the following:
(a) (i) Obtain the integral surface of the equation
$x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=0$ satisfying the condition $u(1, y)=y$.
(ii) Solve $z(x+y) p+z(x-y) q=x^{2}+y^{2}$.
(b) (i) Solve $u_{t t}=c^{2} u_{x x}, x>0, t>0$ subject to the non-homogeneous boundary conditions $u(x, 0)=f(x), x \geq 0$,
$u_{t}(x, 0)=g(x), x \geq 0$,
$u(0, t)=p(t), t \geq 0$.
(ii) Solve $u_{t t}-c^{2} u_{x x}=0(-\infty<x<\infty, t \geq 0)$ subject to the initial conditions $u(x, 0)=\eta(x)$ and $u_{t}(x, 0)=v(x)$.
$6+4=10$
(c) (i) Reduce $x^{2} z_{x x}+2 x y z_{x y}+y^{2} z_{y y}=0$ to canonical form and hence solve it.
(ii) Find the characteristic of $x^{2} z_{x x}-y^{2} z_{y y}=0$.
$(5+3)+2=10$
(d) (i) Solve by method of separation of variables $\frac{\partial U}{\partial x}=2 \frac{\partial U}{\partial t}+U$

$$
U(x, 0)=6 e^{-3 x}
$$

(ii) Prove that the surface passing through the parabola $U=0, y^{2}=4 a x$ and $U=1$, $y^{2}=-4 a x$ and satisfying the equation $x \frac{\partial^{2} U}{\partial x^{2}}+2 \frac{\partial U}{\partial x}=0$

$$
\text { is } \quad U=-\frac{y^{2}}{8 a x}+\frac{1}{2}
$$

