Semester-III

Course Type	Title of the Course	Credit	Full Marks	Lecture Hour
		5	75	60
Major Course MATH3011	Real Analysis I	(Theory-05)	(Theory-60, Internal Assessment–15)	(Lecture -45, Tutorial –15)
Major Course MATH3012	Linear Algebra	5 (Theory-05)	75 (Theory-60, Internal Assessment–15)	60 (Lecture -45, Tutorial – 15)
Minor Course MSR3021	Medical Sales Representative - Module 1	4 (Theory-05)	(Theory-60, Internal Assessment–15)	60 (Lecture -45, Tutorial – 15)
Multi/ Interdisciplinary ENGL3031	Practical English Grammar and Usage	3 (Theory-03)	50 (Theory- 40,Internal Assessment–10)	40 (Lecture -30, Tutorial – 10)
AEC (L1-1 MIL) BENG3041	Bangla Choto Golpo O Kobita	2 (Theory-02)	50 (Theory- 40,Internal Assessment–10)	30
SEC MATH3051	Mathematical Modelling	3 (Theory-03)	50 (Theory-40, Internal Assessment–10)	45
		Total Credit = 22	Total Marks = 400	

SEMESTER – III

MAJOR COURSES

Course Code: MATH3011 Course Name: Real Analysis I (Credit: 5, Marks: 75) Total Hours: Lecture -60, Tutorial – 15

Objectives:

To familiarize the students with the fundamental concepts of real analysis such as countable set, uncountable set, Archimedean property, completeness property, open set, closed set, compact set in \mathbb{R} . Also, to present the concepts of sequence of real numbers, series of real numbers, limit and continuity of real valued functions defined on subsets of \mathbb{R} .

Learning outcomes:

On completion of the course, the student should have the following learning outcomes defined in terms of knowledge, skills and general competence:

Knowledge: The students would gain knowledge about

- i. Order property, Archimedean property, completeness property of \mathbb{R} .
- ii. Countable set, uncountable set, limit point, interior point, open set, closed set, compact set in \mathbb{R} .
- iii. Sequences, subsequence and series of real numbers.
- iv. Limit, continuity and uniform continuity of real valued functions defined on subsets of \mathbb{R} including their interrelationship.

Skills: The students would be able to

- i. Characterize subsets of \mathbb{R} which are open, closed, countable, uncountable, compact.
- ii. Characterize sequences and subsequences in \mathbb{R} which are convergent or divergent.
- iii. Determine which infinite series of real numbers is convergent and which is not by using various test in their course.
- iv. Calculate limit of real valued functions defined on subsets of \mathbb{R} .
- v. Characterize real valued functions defined on subsets of \mathbb{R} which are discontinuous, which continuous and which are uniformly continuous.

General Competence: The students would gain

- i. Some fundamental concepts of real analysis which help them to learn all the branches of mathematics smoothly.
- ii. Analytical and reasoning skills, which improve their thinking power.

Contents:

Review of algebraic and order properties of \mathbb{R} , idea of countable sets, uncountable sets and uncountability of \mathbb{R} . Bounded above sets, bounded below sets, bounded sets, unbounded sets. Supremum and infimum. Completeness property of \mathbb{R} and its equivalents. The Archimedean property, dense sets in \mathbb{R} . Density of rational and irrational numbers in \mathbb{R} . Intervals, ε - neighbourhood of a point in \mathbb{R} , interior points of a set, open set, limit point of a set, isolated points, derived set, closed set. Interior, exterior, frontier and boundary of a set. Bolzano – Weierstrass theorem for sets. Compact sets in \mathbb{R} , Heine – Borel theorem. **[L-20H & T-5H]**

Sequences of real numbers, bounded and unbounded sequences, convergent sequence, limit of a sequence and related Theorems. Monotonically increasing and decreasing sequences, relevant theorems, subsequences, theorems on monotone subsequence, Bolzano – Weierstrass theorem for sequences. Cauchy sequences, Cauchy's convergence criterion, lim sup, lim inf and associated theorems. [L-13H & T-3H]

Infinite series of real numbers, convergence and divergence of infinite series, Cauchy's convergence criterion, Abel's – Pringsheim's theorem. Tests for convergence: comparison tests, D' Alembert's ratio test, p- series, Cauchy's root test, Raabe's test, Gauss's test, Logarithmic test, De Morgan and Bertrand test, integral test, Cauchy's condensation test. Alternating series, Leibnitz's test, Absolute and conditional convergence. Riemann's rearrangement theorem (statement only).

[L-12H & T-3H]

Limit of a function ($\varepsilon - \delta$ definition), sequential criteria for limits, divergence criteria, algebra of limits & theorems, infinite limits and limits at infinity. Continuous functions, sequential criteria for continuity and discontinuity. Algebra of continuous functions. Continuous functions on an interval, Bolzano's theorem on continuity, intermediate value theorem, fixed point theorem. Uniform continuity, non-uniform continuity criteria, theorems on uniform continuity. [L-15H & T-4H]

Suggested Books:

Text Books:

- 1. Introduction to Real Analysis R.G. Bartle and D.R. Sherbert, (3rd Ed., John Wiley and Sons (Asia) Pvt. Ltd., Singapore).
- 2. Mathematical Analysis- Tom M. Apostol, (Narosa Publishing House, 1981).
- 3. Calculus and mathematical Analysis- S. Goldberg.

Reference Books.

- 1. Introduction to Real Analysis S. K. Mapa, (Sarat Book Distributors, Kolkata 73).
- 2. Real Analysis B.K. Lahiri & K.C. Roy, (World Press, Calcutta, 1988).
- 3. An Introduction to Analysis (Differential Calculus) R.K. Ghosh & K.C. Maity, (New Central Book Agency (P) Ltd., Kolkata 700009).
- 4. Mathematical Analysis S. C. Malik & Savita Arora, (New Age International Publishers).

Course Code: MATH3012 Course Name: Linear Algebra (Credit: 5, Marks: 75) Total Hours: Lecture -60, Tutorial – 15

Objectives:

To present a systematic introduction of the fundamental concepts of Linear Algebra and some of its applications.

Learning outcomes:

On completion of the course, the student should have the following learning outcomes defined in terms of knowledge, skills and general competence.

Knowledge: The students would gain knowledge about

- i. vector space and its dimension.
- ii. linear transformation, transpose of a linear transformation and their matrix representation.
- iii. system of linear equations and various methods to solve them.
- iv. eigenvalues, eigenvectors, diagonalizability, canonical forms of a matrix.
- v. inner product space, orthogonalization process.

Skills: The students would be able to

- i. compute a basis and dimension of a vector space.
- ii. compute matrix representation of a linear transformation and its transpose,
- iii. compute the characteristic polynomial, minimal polynomial, eigen value, eigen vector of a matrix as well as of a linear operator and use them in the basic diagonalization result.
- iv. find canonical forms of a matrix
- v. solve system of linear equations using Gaussian elimination method and matrix inversion method
- vi. compute orthogonality of vectors in an inner product and applying Gram-Schmidt orthogonalization process they will obtain an orthonormal basis of an inner product space.

General competence: The students would gain

- i. fundamental concepts of vector space, linear transformation, matrix representation of a linear transformation, solution methods of a system of equations, canonical forms of a matrix, diagonalization, orthogonalization, which will be useful for further studies in every branch of mathematics.
- ii. analytical and reasoning skills, which improve their thinking power.

Contents:

Vector spaces, subspaces, algebra of subspaces, quotient spaces, linear combination of vectors, linear span, linear independence, basis and dimension, dimension of subspaces, extension, deletion and replacement theorems. [L-8H & T-2H]

Linear transformations, null space, range, rank and nullity of a linear transformation, matrix representation of a linear transformation, algebra of linear transformations, transpose of a linear

transformation and matrix representation of the transpose of a linear transformation, isomorphisms, isomorphism theorems, invertibility and isomorphisms, change of coordinate matrix.

[L-12H & T-3H]

Elementary operations on matrices, row reduction and echelon forms of a matrix, rank of a matrix, characterization of invertible matrices using rank. Eigenvalues, eigenvectors and characteristic equation of a matrix. Cayley-Hamilton theorem and its use in finding the inverse of a matrix.

[L-12H & T-3H]

System of linear equations, the matrix equation Ax = b, necessary and sufficient condition for consistency of a linear non-homogeneous system of equations, solution of systems of linear equations using Gaussian elimination method and matrix inversion method, solution sets of linear systems, applications of linear systems. [L-8H & T-2H]

Eigen spaces of a linear operator, diagonalizability, invariant subspaces, the characteristic polynomial and the minimal polynomial of a linear operator, diagonalization, Jordan canonical forms.

[L-12H & T-3H]

Inner product spaces and norms, Cauchy – Schwarz inequality, parallelogram law, Pythagorean theorem, Gram-Schmidt orthogonalization process, orthogonal complements and projections.

[L-4H & T-1H]

Bilinear form, matrix associated with a bilinear form, quadratic form, rank, signature and index of a quadratic form, Sylvester's law of inertia (statement only), reduction of a quadratic form to normal form. [L-4H & T-1H]

Suggested Books:

Text books:

- Linear Algebra S. H. Friedberg, A. J. Insel & L.E. Spence, 4th edition (Prentice Hall of India pvt., 2004).
- 2. Linear Algebra K. Hoffman, R. Kunze, 2nd edition (Pearson Education Limited, 2016).
- 3. Higher Algebra: Abstract and Linear S. K. Mapa, (Levant Books, 2020) (1st Edition).

Reference books:

- 1. Linear Algebra- A Geometric Approach S. Kumaresan, (Prentice Hall of India).
- Linear Algebra A. R. Rao & P. Bhimasankaram, 2nd Edition (Hindustan Book agency, 2000).
- 3. Topics in Algebra I. N. Herstein, 2nd edition (John Wiley & Sons Inc (Sea) Pte Ltd, 2017).
- 4. Linear Algebra S. K. Berberian (Oxford University Press, 1992).
- 5. Linear Algebra S. Lang, (3rd edition) (Springer, 1987).
- Basic Abstract Algebra P. B. Bhattacharya, S. K. Jain & S. R. Nagpaul, (2nd edition) (Cambridge University Press, 2014).
- 7. Linear Algebra Done Right Sheldon Axler, (3rd edition) (Springer, 2015).

THE UNIVERSITY OF BURDWAN

Minor Course under Vocational Education & Training Course Code: MSR3021 Course Title: Medical Sales Representative –Module 1 Total Credit: 4 (Lecture -3, Tutorial -1) Duration: 60 Hours Detailed Syllabus – Third Semester

Orientation Module (Duration: 4 Hrs.)

- Collect information of key persons at hospitals, pharmacies and dealers
- Summarize the healthcare ecosystem including relevant govt. scheme, social security benefits
- Gather information about health and other relevant standards and the possible company's tie up with various regulatory bodies and authorities
- Explain regulatory authorities and government policies, rules and regulations (CDSCO/NPPA/ MRTP Act) and their impact on business dynamics, relevant to Life Sciences industry.

Understand Role of MSR and Regulations for MSR (Duration: 6 Hrs.)

- Perform the occupation effectively as per company's standard guidelines
- Recall the organization structure and employment benefits in Life Sciences organizations
- Outline the role of MSR, required skills and knowledge (As per qualification pack) including its career path as well as identify the MCI code of conduct guidelines for MSR and UCP-MP Act
- Practice soft communication skills while communicating with doctors, physicians, pharmacists & cross functional colleagues.

Major Stakeholders and Sale & Distribution System in Pharma & Bio Pharma (Duration: 5 Hrs.)

- Follow-up with key persons at hospitals, pharmacies and dealers to ensure smooth coordination with product distribution related stakeholders
- Describe drug distribution system of pharmaceutical, vaccines, ayurvedic and homeopathic products and role of various stakeholders involved like CFA, distributor, stockist, and liasioning agents.

THE UNIVERSITY OF BURDWAN

Minor Course under Vocational Education & Training Course Code: MSR3021 Course Title: Medical Sales Representative –Module 1 Total Credit: 4 (Lecture -3, Tutorial -1) Duration: 60 Hours Detailed Syllabus – Third Semester

Understanding of Human Body: Anatomy and Physiology (Duration:12 Hrs.)

- Summarize technical/ scientific data presentations and briefings about product and market
- Use the basics of general anatomy, physiology, and various systems of the human body while performing the product presentation to healthcare professionals
- Correlate medical specialties and their common diseases.

English Speaking and Personality Development Part 1 (Duration: 33 Hrs.)

- •Understanding the communication process.
- •The different types of communication methods.
- •Communicating in English.
- •First Language (Mother Tongue) Interference.
- •Importance of Listening when learning English.
- •Time Management.

Reference Books on Medical Sales Representative

- 1. Community Pharmacy Handbook Jon Waterfield
- 2. Essential of Pharmaceutical Chemistry Donald Cairns
- 3. Pharmaceutical Innovation and Access to Medicines- OECD 2018
- 4. Essential of Human Physiology for Pharmacy- Laurie Kelly
- 5. Textbook of Organic Medicinal and Pharmaceutical Chemistry 11th edition- Wilson and Gisvold's
- 6. Review of Medical Physiology 26th Edition- Gannong
- 7. Soft Skill for everyone- Jeff Butterfeild

INTERDISCIPLINARY COURSE

ENGL3031: Practical English Grammar and Usage [3 Cr, Full Marks: 50 (Theory: 40 + IA: 10), LH: 45 hrs]

COURSE OBJECTIVES:

This course has been designed with a view to reinforcing the students' competency in English grammar and usage as acquired at the secondary level. Already acquired linguistic skills in English will be consolidated and expanded so that students may competently use English in emerging domains of knowledge or in various socio-cultural circumstances.

Parts of Speech and Usage (LH: 20) Nouns: Kinds of Nouns and their Usage Pronouns: Kinds of Pronouns and their Usage Adjectives: Kinds of Adjectives and their Usage Articles and Determiners: Usage Adverbs: Kinds of Adverbs and their Usage Prepositions: Usage Conjunctions: Usage Verbs: Auxiliaries and Main Verbs, Modal and Semi-modal Verbs: Usage Transitive and Intransitive Verbs: Usage Finite and Non-Finite Verbs: Usage

Sentence (LH: 15) Types of Sentence (Simple, Compound and Complex) and Clause and their Usage Tense and Time Types of Simple Sentences (Declarative, Interrogative, Imperative, Optative, Exclamatory): Form and Function

Concord (LH: 10) Concord of Number, Number system of Nouns and Verbs, Concord of Person, Concord System in Different Constructions

COURSE OUTCOME:

This course of study will help the students to capitalize on their acquired knowledge of English and make them comfortable in using English effectively in different social, cultural and academic situations.

4.AEC(L1-2) BENG3041 বাংলা ছোটোগল্প ও কবিতা এই পাঠ্যসূচির উদ্দেশ্য হল বাংলা সাহিত্যের আধুনিক কালের বাংলা ছোটগল্প ও কবিতা সম্পর্কে শিক্ষার্থীদের অবহিত করা।

একক -১

বাংলা ছোটগল্প – রবীন্দ্রনাথ ঠাকুর – একরাত্রি, প্রভাত মুখোপাধ্যায় – আদরিনী, বনফুল – তাজমহল।

একক -২

একালের কবিতা – দিনেশ দাস – কেরাণী, পেমেন্দ্র মিত্র – মানে, শক্তি চট্টোপাধ্যায় – অবনী বাড়ি আছো।

SKILL ENHANCEMENT COURSES

Course Code: MATH3051 Course Name: Mathematical Modelling (Credit: 3, Marks: 50) Total Hours: Lecture -30, Tutorial – 15

Objectives:

- i. To provide fundamental concept of mathematical modelling,
- ii. To discuss different types of models with the inclusion of linear, exponential, logistic, optimization, time series, simulation
- iii. To discuss applicability of these models

Learning outcomes:

On successful completion of the course, the student will be well-conversed with the following outcomes

- i. To gain knowledge about modelling
- ii. To develop skill of model formation
- iii. To update general competence

Knowledge:

- i. Students to acquire basic knowledge concerning formation of various models
- ii. Linear models help students to identify and estimate the relationship between variables, to analyze trends, to predict and make decisions from outcomes
- iii. Exponential models help students to comprehend the rapid and often accelerating changes that occur in diverse natural and social systems
- iv. Logistic model concerning real-world problems promote students to understand the limitations and saturation points of various processes
- v. Optimization models empower students to take optimal decision and maximize the desired outcomes while considering real-world limitations and constraints
- vi. Probabilistic/Stochastic models help students to handle uncertainty and make reasonable decisions by quantifying the likelihood of different outcomes
- vii. Time series models facilitate students to analyze data, identify patterns, and make accurate predictions crucial for forecasting and understanding trends
- viii. Simulation models provide powerful approach to study those systems in the event of nonavailability of analytical solutions, support performance evaluation, risk analysis and decision support

Skill: Students to be

- i. exposed to various mathematical models and their real-life applications
- ii. benefited in simulations, understanding and predicting complex systems.

General competence:

- i. To empower students the to understand the construction/framing mathematical models
- ii. To analyze and solve the real-world problems mathematically
- iii. To employ the usage of mathematical tools and techniques for the outcomes of those problems

Contents:

Overview of mathematical modelling and its applications in understanding real-world phenomena. Introduction to model classifications (Deterministic, Stochastic, Continuous, Discrete); Linear models and their applications; Usage of linear regression for modelling relationships between variables; Fitting linear models to data in analyzing trends and making predictions; Exponential model and its applications; Usage of exponential growth and decay models in population studies, finance, compound interest, half-life, and other relevant fields. [L-8H & T-4H]

Logistic models and their applications; Usage of logistic growth models in population studies, ecology, and epidemiology; Significance of logistic models in situations where growth is initially rapid but levels off over time. Optimization models and their applications; Use of linear programming and optimization techniques to maximize or minimize objectives; Importance of optimization models in resource allocation, production planning, and decision-making. Probabilistic / Stochastic models and their applications. [L-12H & T-6H]

Time series models and their applications; Importance of time series models in analyzing trends, seasonality, and forecasting future outcomes with applications. Introduction to simulation models and their applications; Monte Carlo simulation model, simulating deterministic features (area under a curve, volume under a surface) and other techniques for modelling uncertainty; Significance of simulation models in evaluating performance, risk analysis, decision support, random number generation. [L-10H & T-5H]

Suggested Books:

Text Books:

1. Mathematical Modeling: Models, Analysis, and Applications- Sandip Banerjee, (Chapman and Hall/CRC).

- 2. A First Course in Mathematical Modeling- Frank R. Giordano, William P. Fox, and Steven B. Horton, (Brooks/Cole).
- Mathematical Models in Biology: An Introduction- Elizabeth S. Allman and John A. Rhodes, (Cambridge University Press).
- 4. Practical Applied Mathematics: Modelling, Analysis, Approximation- Sam Howison, (Cambridge University Press).

Reference Books:

- 1. Modelling with Mathematics: Authentic Problem Solving in Middle School- Nancy Butler Wolf, (Heinemann).
- 2. Mathematical modelling- J. N. Kapur, (New Age International Private Limited).
- Mathematical Modeling: Applications with GeoGebra- Jonas Hall and Thomas Lingefjärd, (Wiley).
- 4. Mathematical Modeling- Mark. M. Meerschaert, (Academic Press Inc.).
- 5. Differential Equations and their applications- Zafar Ahsan, (Prentice Hall India Learning Private Limited).

Semester: III Paper: MATH3011 (Real Analysis I) Total Lectures = 60

Unit 1 (Real Nun	nber System) Total Lectures =20	
	CONTENTS	
Review of algebra	aic and order properties of \mathbb{R} , idea of countable sets, uncountable sets and	
uncountability of \mathbb{R} . Bounded above sets, bounded below sets, bounded sets, unbounded		
sets. Supremum a	nd infimum. Completeness property of \mathbb{R} and its equivalents. The	
Archimedean prop	perty, dense sets in \mathbb{R} . Density of rational and irrational numbers in \mathbb{R} .	
Intervals, - neight	bourhood of a point in \mathbb{R} , interior points of a set, open set, limit point of a	
set, isolated point	s, derived set, closed set. Interior, exterior, frontier and boundary of a set.	
Bolzano – Weiers	trass theorem for sets. Compact sets in \mathbb{R} , Heine – Borel theorem.	
Lecture Serial	Topics of Discussion	
Lecture 1	Review of algebraic and order properties of \mathbb{R}	
Lecture 2	\mathcal{E} -neighbourhood of a point in \mathbb{R}	
Lecture 3	Some theorems and problems on neighbourhood of a point in \mathbb{R}	
Lecture 4	Idea of countable sets, some examples and theorems	
Lecture 5	Example of uncountable sets and uncountability of \mathbb{R}	
Lecture 6	Bounded above, Bounded below, Bounded sets and their examples	
Lecture 7	Supremum, infimum of a subset of \mathbb{R} with examples	
Lecture 8	Completeness property of \mathbb{R} and it's equivalent properties	
Lecture 9	Archimedean property of \mathbb{R} and it's examples	
Lecture 10	Density property of rational and irrational numbers	
Lecture 11	Open intervals, closed intervals and their properties	
Lecture 12	Limit point and isolated point of a set in \mathbb{R} and related theorems and	
	problems	
Lecture 13	Interior point of a set in \mathbb{R} and concept of open sets with examples	
Lecture 14	Theorems and problems related to open sets	
Lecture 15	Introduction of closed sets and some examples of closed sets	
Lecture 16	Theorems and problems on closed sets	
Lecture 17	Derived set of a set in \mathbb{R} and its properties	
Lecture 18	Bolzano-Weierstrass property and it's verification with some examples	
Lecture 19	Open cover of a set in \mathbb{R} and concept of compactness in \mathbb{R}	
Lecture 20	Heine-Borel theorem and some problems related to compactness.	
Unit 2 (Sequence	e of real numbers) Total lectures =13	
CONTENTS		
Sequences of real numbers, bounded and unbounded sequences, convergent sequence, limit		
of a sequence and	related Theorems. Monotonically increasing and decreasing sequences,	
relevant theorems	, subsequences, theorems on monotone subsequence, Bolzano –	
Weierstrass theore	em for sequences. Cauchy sequences, Cauchy's convergence criterion, lim	
sup, lim inf and associated theorems.		
Lecture Serial	Topics of Discussion	
Lecture 21	Introduction of sequence of real numbers with various examples	
Lecture 22	Concept of bounded above, bounded below and bounded sequence with examples	
Lecture 23	Definition of convergent sequence and limit of a sequence with	
	examples	
Lecture 24	Relation between bounded and convergent sequences	
Lecture 25	Limit superior and limit inferior, theorems and problems	

Lecture 26	Limit theorems: Addition, subtraction and multiplication by a scalar with examples and counter examples
Lecture 27	Limit theorems: Multiplication, Division, Modulus with examples and counter examples
Lecture 28	Introduction of monotone sequences with examples
Lecture 29	Monotone convergence theorems and its applications
Lecture 30	Introduction of sub sequence and divergence criterion
Lecture 31	Some problems with sub sequence theorem and Bolzano-Weierstrass
Lecture 32	Introduction of Cauchy sequence with examples
Lecture 33	The relation between convergence and Cauchy sequences and Cauchy criterion for convergence

Unit 3 (Series of	real numbers) Total lectures =12	
CONTENTS		
Infinite series of real numbers, convergence and divergence of infinite series, Cauchy's		
convergence crite	rion, Abel's – Pringsheim's theorem. Tests for convergence: comparison	
tests, D' Alembert's ratio test, - series, Cauchy's root test, Raabe's test, Gauss's test,		
Logarithmic test,	De Morgan and Bertrand test, integral test, Cauchy's condensation test.	
Alternating series	, Leibnitz's test, Absolute and conditional convergence. Riemann's	
rearrangement the	eorem (statement only).	
Lecture Serial	Topics of Discussion	
Lecture 34	Introduction of infinite series with examples and sequence of partial	
	sums of a series	
Lecture 35	Convergence and Divergence of a series with examples	
Lecture 36	Cauchy criterion for convergence of an infinite series with applications.	
Lecture 37	Comparison test and limit comparison test with applications	
Lecture 38	D' Alembert's ratio test with applications	
Lecture 39	Raabe's test with applications	
Lecture 40	D" Morgan and Bertrand's test with applications	
Lecture 41	Cauchy's integral test with applications	
Lecture 42	Cauchy's n^{th} root test with applications	
Lecture 43	Gauss" test with applications	
Lecture 44	Alternating series and Leibnitz's test with some applications.	
Lecture 45	Absolute and conditional convergence with some examples	

Unit 4 (Limit & Continuity of real valued functions)Total Lectures =15

CONTENTS Limit of a function (definition), sequential criteria for limits, divergence criteria, algebra of limits & theorems, infinite limits and limits at infinity. Continuous functions, sequential criteria for continuity and discontinuity. Algebra of continuous functions. Continuous functions on an interval, Bolzano's theorem on continuity, intermediate value theorem, fixed point theorem. Uniform continuity, non-uniform continuity criteria, theorems on uniform continuity.

Lecture Serial	Topics of Discussion
Lecture 46	$\varepsilon - \delta$ definition of limit of a function with examples
Lecture 47	Uniqueness of limit and sequential criterion of limit. Same sign property.
Lecture 48	Limit theorems: Sum, difference and scalar multiplication of functions
Lecture 49	Limit theorems: product, ratio of functions
Lecture 50	Sandwich theorem with applications

Lecture 51	Cauchy's principle with examples
Lecture 52	Concept of one-sided limits and infinite limits with examples
Lecture 53	Continuity of a function with examples and some theorems
Lecture 54	Sequential criterion of continuity and some applications.
Lecture 55	Continuity of sum, difference, product, ratio of two continuous functions
Lecture 56	Examples of some important continuous functions and composite functions
Lecture 57	Various type of discontinuity with examples
Lecture 58	Same sign property, the relation between continuity and boundedness, Intermediate value property
Lecture 59	Relation between monotone function and continuous function, some theorems related to open, closed sets and continuity
Lecture 60	Uniform continuity: Definition, theorems and some problems.

Semester: III

Paper: MATH3012 (Linear Algebra) Total Lectures = 60

Unit- 1	Total Lectures =08
Vector spaces, subs linear span, linear in	CONTENTS paces, algebra of subspaces, quotient spaces, linear combination of vectors, independence, basis and dimension, dimension of subspaces, extension,
deletion and replace	ement theorems.
Lecture 1	Definition of Vector space V over a field F. Examples of different vector spaces, some important properties of vector space, few useful theorems.
Lecture 2	Definition: Subspace of a vector space, Examples, Few theorems on subspace. Theorem: The intersection of a family of subspaces of a vector space is a subspace of that vector space. Theorem: The union of two subspaces of a vector space is not, in general, a subspace of that space. Algebra of subspaces: Linear sum of subspaces. Theorems and examples.
Lecture 3	Definition: Linear combination, linear span, spanning set. Examples for clear understanding of these definitions. Theorem: Let V be a vector space over a field F and let S be a non- empty subset of V. Then the set W of all linear combinations of the vectors in S forms a subspace of V and this is the smallest subspace containing the set S. Problem discussion.
Lecture 4	Linear dependence and linear independence, verification with examples. Theorem: If the set of vectors $\{\alpha 1, \alpha 2,, \alpha n\}$ in a vector space V over a field F be linearly dependent, then at least one of the vectors of the set can be expressed as a linear combination of the remaining others. Deletion Theorem.
Lecture 5	Proof of Deletion Theorem. Solving problems by applying Deletion Theorem.Basis and Dimension. Example of bases for a vector space and the corresponding dimension of the vector space.
Lecture 6	Finite and infinite dimensional vector spaces. Example of finite and infinite dimensional vector spaces. Proof of Replacement Theorem. Solving problems by applying Replacement Theorem.
Lecture 7	Proof of Extension Theorem. Application of Extension Theorem to solve various problems. Coordinates of vectors.
Lecture 8	Quotient Space definition and properties of quotient space. Theorem: Let V be a vector space over a field F and W be a subspace of V. Then dim V=dim U + dim W.
Unit- 2	Total Lectures =12

CONTENTS		
Linear transformations, null space, range, rank and nullity of a linear transformation, matrix		
representation of a linear transformation, algebra of linear transformations, Isomorphisms,		
Isomorphism theorems, invertibility and isomorphisms, change of coordinate matrix.		
Lecture 9	Definition of linear transformation. Example of various type of linear	
	transformation.	
Lecture 10	Theorem on existence of unique linear transformation for two given	
	vector space over a same field. Application of this theorem on different	
	problems.	
Lecture 11	Definition of kernel of a linear transformation, examples, few important	
	theorems on kernel of a linear transformation.	
T (10		
Lecture 12	Null space, Range space: Definition and examples; Nullity and Rank of a	
	linear transformation.	
	Proof of the Theorem:	
Lecture 13	Let V and W be vector space over the field F and let T be a linear	
	transformation from V into W. Suppose that V is finite dimensional.	
	Then rank (T) + nullity (T) =dim V. Application of this theorem.	
Lecture 14	Theorem: If \mathbf{A} is an m x n matrix with entries in the field F then Row	
	rank (A) = Column rank (A)	
	Problem discussion	
	Algebra of Linear Transformation:	
Lecture 15	Algebra of Linear Transformation: Addition of two linear transformations,	
Lecture 15	Algebra of Linear Transformation: Addition of two linear transformations, multiplication of linear transformations. Important properties and	
Lecture 15	Algebra of Linear Transformation: Addition of two linear transformations, multiplication of linear transformations. Important properties and theorems.	
Lecture 15 Lecture 16	Algebra of Linear Transformation:Additionoftwolinear transformations,multiplication of linear transformations. Important properties andtheorems.Invertibility of linear transformation, non-singular linear transformation,	
Lecture 15 Lecture 16	Algebra of Linear Transformation: Addition of two linear transformations, multiplication of linear transformations. Important properties and theorems. Invertibility of linear transformation, non-singular linear transformation, theorem and properties.	
Lecture 15 Lecture 16	Algebra of Linear Transformation: Addition of two linear transformations, multiplication of linear transformations. Important properties and theorems. Invertibility of linear transformation, non-singular linear transformation, theorem and properties. Theorem: Let V and W be finite-dimensional vector space over the field	
Lecture 15 Lecture 16	 Algebra of Linear Transformation: Addition of two linear transformations, multiplication of linear transformations. Important properties and theorems. Invertibility of linear transformation, non-singular linear transformation, theorem and properties. Theorem: Let V and W be finite-dimensional vector space over the field F such that dim (V) =dim (W). If T is linear transformation from V into 	
Lecture 15 Lecture 16 Lecture 17	 Algebra of Linear Transformation: Addition of two linear transformations, multiplication of linear transformations. Important properties and theorems. Invertibility of linear transformation, non-singular linear transformation, theorem and properties. Theorem: Let V and W be finite-dimensional vector space over the field F such that dim (V) =dim (W). If T is linear transformation from V into W, the following are equivalent: 	
Lecture 15 Lecture 16 Lecture 17	 Algebra of Linear Transformation: Addition of two linear transformations, multiplication of linear transformations. Important properties and theorems. Invertibility of linear transformation, non-singular linear transformation, theorem and properties. Theorem: Let V and W be finite-dimensional vector space over the field F such that dim (V) =dim (W). If T is linear transformation from V into W, the following are equivalent: T is invertible 	
Lecture 15 Lecture 16 Lecture 17	 Algebra of Linear Transformation: Addition of two linear transformations, multiplication of linear transformations. Important properties and theorems. Invertibility of linear transformation, non-singular linear transformation, theorem and properties. Theorem: Let V and W be finite-dimensional vector space over the field F such that dim (V) =dim (W). If T is linear transformation from V into W, the following are equivalent: T is invertible T is non-singular 	
Lecture 15 Lecture 16 Lecture 17	 Algebra of Linear Transformation: Addition of two linear transformations, multiplication of linear transformations. Important properties and theorems. Invertibility of linear transformation, non-singular linear transformation, theorem and properties. Theorem: Let V and W be finite-dimensional vector space over the field F such that dim (V) =dim (W). If T is linear transformation from V into W, the following are equivalent: T is invertible T is non-singular T is onto. 	
Lecture 15 Lecture 16 Lecture 17	 Algebra of Linear Transformation: Addition of two linear transformations, multiplication of linear transformations. Important properties and theorems. Invertibility of linear transformation, non-singular linear transformation, theorem and properties. Theorem: Let V and W be finite-dimensional vector space over the field F such that dim (V) =dim (W). If T is linear transformation from V into W, the following are equivalent: T is invertible T is non-singular T is onto. Isomorphism: Definition and examples. 	
Lecture 15 Lecture 16 Lecture 17 Lecture 18	 Algebra of Linear Transformation: Addition of two linear transformations, multiplication of linear transformations. Important properties and theorems. Invertibility of linear transformation, non-singular linear transformation, theorem and properties. Theorem: Let V and W be finite-dimensional vector space over the field F such that dim (V) =dim (W). If T is linear transformation from V into W, the following are equivalent: T is invertible T is non-singular T is onto. Isomorphism: Definition and examples. Theorem: Let V and W be finite-dimensional vector space over the field 	
Lecture 15 Lecture 16 Lecture 17 Lecture 18	 Algebra of Linear Transformation: Addition of two linear transformations, multiplication of linear transformations. Important properties and theorems. Invertibility of linear transformation, non-singular linear transformation, theorem and properties. Theorem: Let V and W be finite-dimensional vector space over the field F such that dim (V) =dim (W). If T is linear transformation from V into W, the following are equivalent: T is invertible T is non-singular T is onto. Isomorphism: Definition and examples. Theorem: Let V and W be finite-dimensional vector space over the field F. Now V and W will be isomorphic iff dim (V) =dim (W). Few more 	
Lecture 15 Lecture 16 Lecture 17 Lecture 18	 Algebra of Linear Transformation: Addition of two linear transformations, multiplication of linear transformations. Important properties and theorems. Invertibility of linear transformation, non-singular linear transformation, theorem and properties. Theorem: Let V and W be finite-dimensional vector space over the field F such that dim (V) =dim (W). If T is linear transformation from V into W, the following are equivalent: T is invertible T is non-singular T is onto. Isomorphism: Definition and examples. Theorem: Let V and W be finite-dimensional vector space over the field F. Now V and W will be isomorphic iff dim (V) =dim (W). Few more theorem and properties. 	
Lecture 15 Lecture 16 Lecture 17 Lecture 18 Lecture 19	 Algebra of Linear Transformation: Addition of two linear transformations, multiplication of linear transformations. Important properties and theorems. Invertibility of linear transformation, non-singular linear transformation, theorem and properties. Theorem: Let V and W be finite-dimensional vector space over the field F such that dim (V) =dim (W). If T is linear transformation from V into W, the following are equivalent: T is invertible T is non-singular T is onto. Isomorphism: Definition and examples. Theorem: Let V and W be finite-dimensional vector space over the field F. Now V and W will be isomorphic iff dim (V) =dim (W). Few more theorem and properties. Theorem: Let V be an n dimensional vector space over the field F. Then 	
Lecture 15 Lecture 16 Lecture 17 Lecture 18 Lecture 19	 Algebra of Linear Transformation: Addition of two linear transformations, multiplication of linear transformations. Important properties and theorems. Invertibility of linear transformation, non-singular linear transformation, theorem and properties. Theorem: Let V and W be finite-dimensional vector space over the field F such that dim (V) =dim (W). If T is linear transformation from V into W, the following are equivalent: T is invertible T is non-singular T is onto. Isomorphism: Definition and examples. Theorem: Let V and W be finite-dimensional vector space over the field F. Now V and W will be isomorphic iff dim (V) =dim (W). Few more theorem and properties. Theorem: Let V be an n dimensional vector space over the field F. Then V is isomorphic to <i>Fn</i>. 	
Lecture 15 Lecture 16 Lecture 17 Lecture 18 Lecture 19	 Algebra of Linear Transformation: Addition of two linear transformations, multiplication of linear transformations. Important properties and theorems. Invertibility of linear transformation, non-singular linear transformation, theorem and properties. Theorem: Let V and W be finite-dimensional vector space over the field F such that dim (V) =dim (W). If T is linear transformation from V into W, the following are equivalent: T is invertible T is non-singular T is onto. Isomorphism: Definition and examples. Theorem: Let V and W be finite-dimensional vector space over the field F. Now V and W will be isomorphic iff dim (V) =dim (W). Few more theorem and properties. Theorem: Let V be an n dimensional vector space over the field F. Then V is isomorphic to<i>Fn</i>. More theorem and properties. 	
Lecture 15 Lecture 16 Lecture 17 Lecture 18 Lecture 19 Lecture 20	 Algebra of Linear Transformation: Addition of two linear transformations, multiplication of linear transformations. Important properties and theorems. Invertibility of linear transformation, non-singular linear transformation, theorem and properties. Theorem: Let V and W be finite-dimensional vector space over the field F such that dim (V) =dim (W). If T is linear transformation from V into W, the following are equivalent: T is invertible T is non-singular T is onto. Isomorphism: Definition and examples. Theorem: Let V and W be finite-dimensional vector space over the field F. Now V and W will be isomorphic iff dim (V) =dim (W). Few more theorem and properties. Theorem: Let V be an n dimensional vector space over the field F. Then V is isomorphic to<i>Fn</i>. More theorem and properties. Matrix representation of a linear transformation. Results and properties. 	
Lecture 15 Lecture 16 Lecture 17 Lecture 18 Lecture 19 Lecture 20	 Algebra of Linear Transformation: Addition of two linear transformations, multiplication of linear transformations. Important properties and theorems. Invertibility of linear transformation, non-singular linear transformation, theorem and properties. Theorem: Let V and W be finite-dimensional vector space over the field F such that dim (V) =dim (W). If T is linear transformation from V into W, the following are equivalent: T is invertible T is non-singular T is onto. Isomorphism: Definition and examples. Theorem: Let V and W be finite-dimensional vector space over the field F. Now V and W will be isomorphic iff dim (V) =dim (W). Few more theorem and properties. Theorem: Let V be an n dimensional vector space over the field F. Then V is isomorphic to<i>Fn</i>. More theorem and properties. Matrix representation of a linear transformation. Results and properties. Algorithm for finding matrix for a given linear transformation. 	
Lecture 15 Lecture 16 Lecture 17 Lecture 18 Lecture 19 Lecture 20	 Algebra of Linear Transformation: Addition of two linear transformations, multiplication of linear transformations. Important properties and theorems. Invertibility of linear transformation, non-singular linear transformation, theorem and properties. Theorem: Let V and W be finite-dimensional vector space over the field F such that dim (V) =dim (W). If T is linear transformation from V into W, the following are equivalent: T is invertible T is non-singular T is onto. Isomorphism: Definition and examples. Theorem: Let V and W be finite-dimensional vector space over the field F. Now V and W will be isomorphic iff dim (V) =dim (W). Few more theorem and properties. Theorem: Let V be an n dimensional vector space over the field F. Then V is isomorphic to <i>Fn</i>. More theorem and properties. Matrix representation of a linear transformation. Results and properties. Algorithm for finding matrix for a given linear transformation. 	
Lecture 15 Lecture 16 Lecture 17 Lecture 18 Lecture 19 Lecture 20 Unit- 3	Algebra of Linear Transformation:Additionoftwolinear transformations,multiplication of linear transformations. Important properties andtheorems.Invertibility of linear transformation, non-singular linear transformation,theorem and properties.Theorem: Let V and W be finite-dimensional vector space over the fieldF such that dim (V) =dim (W). If T is linear transformation from V intoW, the following are equivalent:T is invertibleT is non-singularT is onto.Isomorphism: Definition and examples.Theorem: Let V and W be finite-dimensional vector space over the fieldF. Now V and W will be isomorphic iff dim (V) =dim (W). Few moretheorem and properties.Theorem: Let V be an n dimensional vector space over the field F. ThenV is isomorphic toFn.More theorem and properties.Matrix representation of a linear transformation. Results and properties.Algorithm for finding matrix for a given linear transformation.	

CONTENTS		
Elementary operations on matrices, row reduction and echelon forms of a matrix, rank of a		
matrix, characterizati	on of invertible matrices using rank. Eigenvalues, eigenvectors and	
characteristic equation of a matrix. Cayley-Hamilton theorem and its use in finding the inverse		
of a matrix.		
Lecture 21	Elementary operations on matrices.	
Lecture 22	Row reduced and echelon form of matrix.	
Lecture 23	Rank of a matrix.	
Lecture 24	Some problems on finding echelon form and rank of a matrix.	
Lecture 25	Finding Inverse of a matrix with row operations.	
Lecture 26	Characterization of invertible matrices using rank.	
Lecture 27	Characteristic equation of a matrix.	
Lecture 28	Eigen values and Eigen vectors of a matrix.	
Lecture 29	Some more problems on Eigen values and Eigen vectors of a matrix.	
Lecture 30	Cayley-Hamilton Theorem	
Lecture 31	Finding the inverse of a matrix by Cayley-Hamilton Theorem.	
Lecture 32	Some more problems on Cayley-Hamilton Theorem.	
Unit- 4	Total Lectures =08	
	CONTENTS	
System of linear equations, the matrix equation $Ax = b$, necessary and sufficient condition for		
consistency of a linear non-homogeneous system of equations, solution of systems of linear		
equations using Gaussian elimination method and matrix inversion method, solution sets of		
equations using Odds	sian elimination method and matrix inversion method, solution sets of	
linear systems, applic	sian elimination method and matrix inversion method, solution sets of eations of linear systems.	
linear systems, applic Lecture 33	sian elimination method and matrix inversion method, solution sets of cations of linear systems. System of linear equations, the matrix equation $Ax = b$	
linear systems, applic Lecture 33 Lecture 34	sian elimination method and matrix inversion method, solution sets of eations of linear systems. System of linear equations, the matrix equation $Ax = b$ Necessary and sufficient condition for consistency of a linear non-	
linear systems, applic Lecture 33 Lecture 34	sian elimination method and matrix inversion method, solution sets of tations of linear systems. System of linear equations, the matrix equation $Ax = b$ Necessary and sufficient condition for consistency of a linear non- homogeneous system of equations.	
Lecture 33 Lecture 35	Sian elimination method and matrix inversion method, solution sets of cations of linear systems.System of linear equations, the matrix equation $Ax = b$ Necessary and sufficient condition for consistency of a linear non- homogeneous system of equations.Solution of systems of linear equations using Gaussian elimination	
Lecture 33 Lecture 35	 sian elimination method and matrix inversion method, solution sets of eations of linear systems. System of linear equations, the matrix equation Ax = b Necessary and sufficient condition for consistency of a linear non-homogeneous system of equations. Solution of systems of linear equations using Gaussian elimination method 	
Lecture 35 Lecture 36	sian elimination method and matrix inversion method, solution sets of cations of linear systems.System of linear equations, the matrix equation $Ax = b$ Necessary and sufficient condition for consistency of a linear non- homogeneous system of equations.Solution of systems of linear equations using Gaussian elimination methodSome more problems by Gaussian elimination method.	
Lecture 35 Lecture 36 Lecture 37	 sian elimination method and matrix inversion method, solution sets of cations of linear systems. System of linear equations, the matrix equation Ax = b Necessary and sufficient condition for consistency of a linear non-homogeneous system of equations. Solution of systems of linear equations using Gaussian elimination method Some more problems by Gaussian elimination method. Solution of systems of linear equations using matrix inversion method. 	
Lecture 35 Lecture 36 Lecture 37 Lecture 38	sian elimination method and matrix inversion method, solution sets of cations of linear systems.System of linear equations, the matrix equation $Ax = b$ Necessary and sufficient condition for consistency of a linear non- homogeneous system of equations.Solution of systems of linear equations using Gaussian elimination methodSome more problems by Gaussian elimination method.Solution of systems of linear equations using matrix inversion method.Solution of systems of linear equations using matrix inversion method.	
Lecture 35 Lecture 36 Lecture 37 Lecture 38 Lecture 39	sian elimination method and matrix inversion method, solution sets of cations of linear systems.System of linear equations, the matrix equation $Ax = b$ Necessary and sufficient condition for consistency of a linear non- homogeneous system of equations.Solution of systems of linear equations using Gaussian elimination methodSome more problems by Gaussian elimination method.Solution of systems of linear equations using matrix inversion method.Solution of systems of linear equations using matrix inversion method.Solution of systems of linear equations using matrix inversion method.Solution sets of linear systems.	

Unit- 5	Total Lectures =12
Eigen spaces of a li polynomial and the m forms.	CONTENTS inear operator, diagonalizability, invariant subspaces, the characteristic inimal polynomial of a linear operator, diagonalization, Jordan canonical
Lecture 41	Eigen Space of a linear operator
Lecture 42	Some examples and problems on eigen space of a linear operator.
Lecture 43	Diagonalizability of a linear operator.
Lecture 44	Some problems on diagonalizability.
Lecture 45	Invariant subspaces with some examples.
Lecture 46	The characteristic polynomial of a linear operator.
Lecture 47	Some more problems.
Lecture 48	The minimal polynomial of a linear operator.
Lecture 49	Some more problems.
Lecture 50	Diagonalization of a linear operator.
Lecture 51	Jordan Canonical forms of matrices.
Lecture 52	Some more related problems.
Unit- 6	Total Lectures =04
Inner product spaces a theorem, Gram-Schmi	CONTENTS and norms, Cauchy – Schwarz inequality, parallelogram law, Pythagorean dt orthogonalization process, orthogonal complements and projections.
Lecture 53	Inner product spaces and norms.
Lecture 54	Cauchy – Schwarz inequality, parallelogram law, Pythagorean theorem.
Lecture 55	Gram-Schmidt orthogonalization process.
Lecture 56	Orthogonal complements and projections.
Unit- 7	Total Lectures =04
Bilinear form, matrix a a quadratic form, Sylv normal form.	CONTENTS associated with a bilinear form, quadratic form, rank, signature and index of rester's law of inertia (statement only), reduction of a quadratic form to
Lecture 57	Bilinear form, matrix associated with a bilinear form.
Lecture 58	Quadratic form, rank, signature and index of a quadratic form.
Lecture 59	Sylvester's law of inertia (statement only), reduction of a quadratic form to normal form.
Lecture 60	Some more related problems.

Semester: III Paper: MATH3051 (Mathematical Modeling) Total Lectures = 45

Unit- 1	L-8H & T-4H
	CONTENTS
Overview of mathema Introduction to model models and their appl variables; Fitting line model and its applica finance, compound in	atical modelling and its applications in understanding real-world phenomena. I classifications (Deterministic, Stochastic, Continuous, Discrete); Linear ications; Usage of linear regression for modelling relationships between ar models to data in analyzing trends and making predictions; Exponential tions; Usage of exponential growth and decay models in population studies, iterest, half-life, and other relevant fields.
Lecture I	Overview of mathematical modelling and its applications in understanding real-world phenomena.
Lecture 2	Classifications and discussion on different kind of Mathematical Model viz. Deterministic, Stochastic, Continuous & Discrete.
Lecture 3	Discussion on Linear models with examples. Application of different Linear models.
Lecture 4	Usage of linear regression for modelling relationships between variables. Fitting linear models to data in analyzing trends and making predictions.
Lecture 5	General discussion on exponential model and its applications.
Lecture 6	Usage of exponential growth and decay models in population studies.
Lecture 7	Application of exponential growth and decay models in finance and compound interest.
Lecture 8	Application of exponential growth and decay models half-life, and other relevant fields.
Lecture 9	General discussion on mathematical modeling by constructing a flowchart.
Lecture 10	Discussion on simple real world problems by constructing a suitable mathematical model.
Lecture 11	Discussion on simple real world problems by constructing a suitable mathematical model.
Lecture 12	Discussion on simple real world problems by constructing a suitable mathematical model.
Unit- 2	Total L-12H & T-6H
	CONTENTS
Logistic models and their applications; Usage of logistic growth models in population studies, ecology, and epidemiology; Significance of logistic models in situations where growth is initially rapid but levels off over time. Optimization models and their applications; Use of linear programming and optimization techniques to maximize or minimize objectives; Importance of optimization models in resource allocation, production planning, and decision-making. Probabilistic / Stochastic models and their applications.	
Lecture 13	Introduction to Logistic Models Introduce the concept of logistic models and their applications. Discussion on the significance of logistic models in population studies, ecology, and epidemiology.

Lecture 14	Derive of the logistic growth equation and explain its components
	Discuss on the characteristics of logistic growth curves
	Providing examples of logistic growth models in population studies and
	ecology
Lecture 15	Discuss the applications of logistic models in epidemiology and other
	fields
	Providing case studies of logistic models in real-world scenarios
	Assigning homework problems on logistic models
Lecture 16	Introduction to Optimization Models
	Introducing the concept of optimization models and their applications
	Discussing the importance of optimization models in resource allocation,
	production planning, and decision-making. Providing examples of
	optimization models.
	Linear Programming
Lecture 17	Introducing the concept of linear programming and its applications
	Discussing the graphical method of solving linear programming
	problems. Providing examples of linear programming problems.
Looturo 18	Ontimization Techniques
	Discussing the simplex method and other optimization techniques
	Providing examples of ontimization models in real-world scenarios
	Assigning homework problems on optimization models
	Introduction to Probabilistic/Stochastic Models
Lecture 19	Introducing the concept of probabilistic/stochastic models and their
Lecture 17	applications Discussing the importance of probabilistic/stochastic
	models in decision-making under uncertainty. Providing examples of
	probabilistic/stochastic models
Lecture 20	Random Variables and Probability Distributions
	Discussing the concept of random variables and probability distributions
	Introducing the concept of expected value and variance. Providing
	examples of random variables and probability distributions.
	Applications of Probabilistic/Stochastic Models
	Discussing the applications of probabilistic/stochastic models in finance,
Lecture 21	insurance, and other fields. Providing case studies of
	probabilistic/stochastic models in real-world scenarios. Assigning
	homework problems on probabilistic/stochastic models
	Case Study - Logistic Models in Population Studies
Lecture 22	Presenting a case study of logistic models in population studies
	Discussing the application of logistic models in predicting population
	growth. Providing examples of logistic models in population studies.
Lecture 23	Case Study - Optimization Models in Resource Allocation
	Presenting a case study of optimization models in resource allocation
	Discussing the application of optimization models in allocating resources
	efficiently. Providing examples of optimization models in resource
	allocation.
Lecture 24	Probabilistic/Stochastic Models in Finance
	Presenting a case study of probabilistic/stochastic models in finance
	Discussing the application of probabilistic/stochastic models in predicting
	stock prices. Providing examples of probabilistic/stochastic models in
	finance.

Lecture 25	Advanced Topics in Logistic Models	
	Discussing advanced topics in logistic models, such as non-linear logistic	
	models. Providing examples of advanced logistic models. Assigning	
	homework problems on advanced logistic models.	
Lecture 26	Advanced Topics in Optimization Models	
	Discussing advanced topics in optimization models, such as integer	
	programming and dynamic programming. Providing examples of	
	advanced optimization models. Assigning homework problems on	
	advanced optimization models.	
Lecture 27	Advanced Topics in Probabilistic/Stochastic Models	
	Discussing advanced topics in probabilistic/stochastic models, such as	
	Markov chains and queuing theory. Providing examples of advanced	
	probabilistic/stochastic models. Assigning homework problems on	
	advanced probabilistic/stochastic models.	
Lecture 28	Review of Mathematical Modeling Concepts	
	Reviewing the key concepts of mathematical modeling, including logistic	
	models, optimization models, and probabilistic/stochastic models	
	Providing examples of mathematical modeling in real-world scenarios	
	Assigning homework problems on review topics	
Lecture 29	Project Presentations - Logistic Models	
Lecture 30	Project Presentations - Logistic Models	
Unit- 3	Total L-10H & T-5H	
CONTENTS		
CUNTENIS		

Time series models and their applications; Importance of time series models in analyzing trends, seasonality, and forecasting future outcomes with applications. Introduction to simulation models and their applications; Monte Carlo simulation model, simulating deterministic features (area under a curve, volume under a surface) and other techniques for modelling uncertainty; Significance of simulation models in evaluating performance, risk analysis, decision support, random number generation.

Lecture 31	Introduction to Time Series Models
	Introducing the concept of time series models and their applications
	Discussing the importance of time series models in analyzing trends,
	seasonality, and forecasting future outcomes. Providing examples of time
	series models in real-world scenarios.
Lecture 32	Types of Time Series Models
	Discussing the different types of time series models, including ARIMA,
	SARIMA, and ETS. Explaining the components of each model and their
	applications. Providing examples of each model.
Lecture 33	Time Series Analysis
	Discussing the steps involved in time series analysis, including data
	preparation, model selection, and forecasting. Explaining the importance
	of stationarity and differencing in time series analysis. Providing
	examples of time series analysis in real-world scenarios.
Lecture 34	Forecasting with Time Series Models
	Discussing the importance of forecasting in business and economics
	Explaining how to use time series models for forecasting. Providing
	examples of forecasting with time series models.

Lecture 35	Time Series Models in Finance
	Discussing the application of time series models in finance, including
	stock price forecasting and risk analysis. Explaining how to use time
	series models to analyze financial data. Providing examples of time series
	models in finance.
Lecture 36	Time Series Models in Economics
	Discuss the application of time series models in economics. Explaining
	how to use time series models to analyze economic data. Providing
	examples of time series models in economics.
Lecture 37	Introduction to Simulation Models
	Introducing the concept of simulation models and their applications
	Discussing the importance of simulation models in evaluating
	performance, risk analysis, and decision support. Providing examples of
	simulation models in real-world scenarios.
Lecture 38	Monte Carlo Simulation Model
	Explaining the concept of Monte Carlo simulation and its applications
	Discussing how to use Monte Carlo simulation to model uncertainty
	Providing examples of Monte Carlo simulation.
Lecture 39	Simulating Deterministic Features
	Discussing how to simulate deterministic features, including area under a
	curve and volume under a surface
	Explaining the importance of simulating deterministic features in modeling
	features
Looturo 40	Simulation Models in Operations Descende
Lecture 40	Discussing the application of simulation models in operations research
	including inventory management and supply chain optimization
	Explaining how to use simulation models to analyze and optimize complex
	systems. Providing examples of simulation models in operations research
Lecture 41	Simulation Models in Finance
	Discussing the application of simulation models in finance, including risk
	analysis and portfolio optimization. Explaining how to use simulation
	models to analyze and optimize financial systems. Providing examples of
	simulation models in finance.
Lecture 42	Advanced Topics in Simulation Models
	Discussing advanced topics in simulation models, including stochastic
	processes and Markov chains. Explaining how to use advanced
	simulation techniques to model complex systems. Providing examples of
	advanced simulation models.
Lecture 43	Simulation Model in Supply Chain Optimization
	Presenting a case study of a simulation model used in supply chain
	optimization. Discussing the application of simulation models in
	optimizing complex systems. Providing examples of simulation models
	in supply chain optimization.
Lecture 44	Simulation Model in Financial Risk Analysis
	Presenting a case study of a simulation model used in financial risk
	analysis. Discussing the application of simulation models in analyzing
	and optimizing financial systems. Providing examples of simulation
	models in financial risk analysis.
Lecture 45	Reviewing the key concepts of mathematical modeling.